A ndrew D. A bell,* J ohn W. B lunt, G lenn J. F oulds and M urray H. G. M unro
Department of Chemistry, University of Canterbury, Christchurch, New Z ealand

The key structural features associated with the potent cytotoxicity observed in the mycalamide, onnamide, pederin and theopederin series have been defined on the basis of structure-activity studies. A model pharmacophore structure has been proposed and selected examples, with modest bioactivity, synthesized.

Introduction

M ycalamides A $\mathbf{1}^{\mathbf{1}}$ and $\mathrm{B} \mathbf{2 ,}{ }^{2}$ pederin $\mathbf{3},{ }^{4}$ the onnamides ${ }^{\mathbf{5}}$ and the theopederins ${ }^{6}$ are biologically active natural products characterised by the presence of the $0(1)-C(10)$ pederic acid subunit (see structures 1-3 for atom numbering). The mycalamides, onnamides and theopederins were isolated from marine sponges while pederin, a potent insect toxin, was isolated from a beetle (Paederus fuscipes). Considerable synthetic interest has been generated in this class of compound due to its natural scarcity, novel structure and potent biological activity. Total syntheses of pederin, ${ }^{7,8}$ the mycalamides and onnamideA ${ }^{9}$ have been reported.

The biological activity of this class of compound is most likely a consequence of inhibition of protein synthesis. ${ }^{10}$ We recently reported extensive microscale structure-activity studies ${ }^{\mathbf{3}}$ on $\mathbf{1}$ and $\mathbf{2}$ with a view to understanding the requirements for biological activity. These experiments demonstrated that the α-hydroxyamido acetal $C(7)-C(10)$ functionality of $\mathbf{1}$ and $\mathbf{2}$ is essential for the in vitro P388 anti-leukaemia activity. Some of the more important structure-activity correlations from this study can be summarised as follows. A cylation or alkylation of the $7-0 \mathrm{H}$ group caused a $10-10^{2}$-fold decrease in bioactivity as compared to 1 . M ethylation of both the amide nitrogen and 7 OH resulted in a 10^{3}-fold less bioactive derivative. Cleavage of the $\mathrm{C}(8)-\mathrm{N}(9)$ amide bond resulted in total loss of biological
activity. The product of deoxygenation at $\mathrm{C}(10)$ was 40 times less bioactive than $\mathbf{1}$, suggesting the crucial importance of the $\mathrm{C}(10)$ centre to the activity. K ocienski et al. ${ }^{11}$ have also reported that the $\mathrm{C}(10)$ epimer of mycalamide $\mathrm{B}(2)$ is some three orders of magnitude less active than the parent compound. Further support for the critical importance of the $C(10)$ oxygen came from studying the biological activity of the various onnamide and theopederin derivatives that have been isolated by the Fusetani group from Theonella sp. sponges. ${ }^{55,6} \mathrm{M}$ ost notable was the reported inactivity of an onnamide derivative lacking oxygenation at $\mathrm{C}(10)$. ${ }^{5 \mathrm{~b}}$

The aim of the current study was to synthesise and test, in vitro against the P388 leuk aemia cell line, simple analogues of the $C(7)-C(10)$ functionality of parents $1-3$, i.e. compounds of the general structure $\mathbf{4}$ where R^{1} to R^{4} could be variously alkyl or aryl, and with defined stereochemistry at each of the two stereogenic centres.

Results and discussion

Synthesis

Two general synthetic routes were used to prepare the optically active analogues $\mathbf{1 2}, 13,27-36,42$ and 43 . The selection of R^{1} to R^{4} was based initially on synthetic utility, then on aspects pertaining to the actual structure of the mycalamides and finally on aspects such as solubility. The method given in Scheme 1

Scheme 1 R eagents and conditions: $\mathrm{i}, \mathrm{A} \mathrm{c}_{2} \mathrm{O}$, pyridine; $\mathrm{ii}, \mathrm{DCC}, \mathrm{HOBT}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{NaBH}{ }_{4}, \mathrm{Pr}^{\mathrm{i} O H}$
involved a dicyclohexylcarbodiimide(DCC)-mediated coupling of a suitable carboxylic acid 6-8 with methyl acetimidate 9 , or methyl benzimidate 10, to form a methyl N -acylimidate 11 Subsequent reduction of 11 with a large excess of sodium borohydride gave the desired compounds 12a-d and the corresponding (1^{\prime})-epimers $13 \mathrm{a}-\mathrm{d}$. The epimers were separated by silicabased radial chromatography. Similar methodologies have also been applied by Kocienski et al. ${ }^{8}$ and M atsumoto and coworkers ${ }^{12}$ in total syntheses of pederin. The reduction of 11 (where $\mathrm{R}^{\mathbf{1}}=\mathrm{OAc}$) gave $\mathbf{1 2 a} / \mathbf{1 3 a}$ and $\mathbf{1 2 b} / \mathbf{1 3 b}$ as the isolated products rather than the corresponding acetates. The starting compound 9 was commericially available while 10 was prepared by reaction of benzonitrile with methanol and gaseous hydrogen chloride. ${ }^{13}$ Compound 6 was prepared by acetylation of (S)-3-phenylacetic acid $\mathbf{5}$ (Scheme 1, step i), while $\mathbf{7}$ and $\mathbf{8}$ were commercially available.

The second method (Scheme 2) involved the reaction of a primary amide, either $\mathbf{1 5}$ or $\mathbf{1 6}$, with an α-chloro ether ($\mathbf{1 7}, \mathbf{1 8}$ or

vi	vii	a	OH	Ph
			OAc	Ph
	vii	f	OH	Et
			OAc	Et
		h	NHZ	Me
			$\mathrm{OCOC}_{6} \mathrm{H}_{4} \mathrm{Br}-4$	$\mathrm{Pr}^{\text {i }}$
			O-camphanyl	Ph

Scheme 2 Reagents and conditions: i, acetone, $\mathrm{H}_{2} \mathrm{SO}_{4},-10^{\circ} \mathrm{C}$; ii, NH_{3}; iii, $\mathrm{AC}_{2} \mathrm{O}$, pyridine; iv, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; v, $4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COCI}, \mathrm{DMAP}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ vi, (1S,4R)-camphanic chloride, DMAP, $\mathrm{Pr}_{2}{ }_{2} \mathrm{NEt}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ vii, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{M} \mathrm{eOH}, \mathrm{H}_{2} \mathrm{O}$
19) in the presence of an excess of triethylamine in dichloromethane at $0^{\circ} \mathrm{C}$. This procedure was used to prepare (1^{\prime})epimeric mixtures of $\mathbf{1 2 e}, \mathbf{g}, \mathrm{h} / \mathbf{1 3 e}, \mathbf{g}, \mathrm{h}$. Silica-based radial chromatography was used to separate the (1^{\prime})-epimers $\mathbf{1 2 e}, \mathrm{h} / \mathbf{1 3 e}, \mathrm{h}$

The mixture of $\mathbf{1 2 g}$ and $\mathbf{1 3 g}$ was hydrolysed to give $\mathbf{1 2 f}$ and 13f, which were then separated by silica-based radial chromatography. The (1^{\prime})-epimers $12 e$ and $13 e$ were also separately hydrolysed to give 12a and 13a, respectively. This method gave a 50% combined yield (from the acid 5) of 12a/13a. By comparison, the preparation of 12a/13a as detailed in Scheme 1 (via the N -acylimidate 11) gave a 33% combined yield of 12a/13a (from the acid 5).
In general, the methods detailed in Scheme 2 proved superior to those given in Scheme 1 for the preparation of derivatives of the type 4. In particular, the coupling of amides 15 and 16 with α-chloro ethers 17-19, to form analogues of general structure 4, gave typical yields ranging from 83 (for 12e/13e) to 52% (for $\mathbf{1 2 h} / \mathbf{1 3 h}$). The corresponding two step procedure using 6-8 (Scheme 1) proved less satisfactory and gave typical yields ranging from 54 (for 12d/13d) to 33% (for 12a/13a). Separation of the mixtures of epimeric products 12 and 13, by silica-based chromatography, resulted in a reduction in yield due to acidcatalysed degradation of the amido acetal functionality. H owever, sufficient material was obtained for biological testing.
The starting amide 15, used in Scheme 2, was synthesized by acetylation of 14, itself prepared by condensation of the α hydroxy acid $\mathbf{5}$ with acetone followed by reaction with ammonia (Scheme 2, steps i-iii). ${ }^{14}$ C ompound 16, which was used to pre pare $\mathbf{1 2 h}$ and $\mathbf{1 3 h}$, was isolated as a decomposition by-product of 12c and 13c on silica. The key α-chloro ethers 17-20 were prepared from the corresponding aldehyde 23 by reaction with gaseous hydrogen chloride and methanol (Scheme 3). ${ }^{15}$

Scheme 3 Reagents and conditions: $\mathrm{i}, \mathrm{M} \mathrm{eOH}, \mathrm{HCl}(\mathrm{g}), \mathrm{EtCl},-60^{\circ} \mathrm{C}$; ii, $\mathrm{M} \mathrm{eOH}, \mathrm{HCl}(\mathrm{g}),-30^{\circ} \mathrm{C}$

The general method detailed in step iv in Scheme 2 was also used to prepare a number of other derivatives of the general structure 4. The reaction of 21 and 22 (prepared from 14 as shown in Scheme 2) with $\mathbf{2 0}$ and $\mathbf{1 7}$ respectively, gave the derivatives $\mathbf{1 2 i} / \mathbf{1 3 i}$ and $\mathbf{1 2 j} / \mathbf{1 3 j}$ as separable mixtures of epimers. These compounds were prepared for structure-activity studies and in an attempt to obtain a crystalline product suitable for X -ray analysis (vide infra). A mixture of 12 j and $\mathbf{1 3 j}$ ($9: 1$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy) was also prepared in 69\% yield from a mixture of 12a and 13a (9:1 by ${ }^{1} \mathrm{H}$ NM R spectroscopy) (Scheme 2). The enantiomers of $\mathbf{1 2 a}$ and 13a, compounds 30 and 28 respectively, were synthesized as detailed in Scheme 4 using (R)-3-phenyllactic acid $\mathbf{2 4}$ (cf. steps i-v in Scheme 2).

Scheme 4 R eagents and conditions: i, acetone, $\mathrm{H}_{2} \mathrm{SO}_{4},-10^{\circ} \mathrm{C}$; ii, NH_{3}; iii, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; iv, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-18^{\circ} \mathrm{C}$; v, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$

The oxazolidinone-based examples 31-36 were synthesized as mixtures of epimers by the direct reaction of $\mathbf{1 4}$ or $\mathbf{2 5}$ with the α-chloro ethers $\mathbf{1 7}$ or $\mathbf{1 9}$, in the presence of gaseous hydro-

Scheme 5 Reagents and conditions: i, $\mathbf{1 7}$ or $\mathbf{1 9}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}$
gen chloride (Scheme 5). A related cyclisation of an α-hydroxy amide with an aromatic or aliphatic aldehyde to give 1,3-oxazolidin-4-ones has been reported. ${ }^{16}$
The glucosyl derivative 42 was synthesized by a DCCmediated coupling of the acid $\mathbf{5}$ with the glucopyranosyl amine 41 (Scheme 6, step v). The amine 41 was prepared ${ }^{17-19}$ from d-

Scheme 6 Reagents and conditions: $\mathrm{i}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{ii}, \mathrm{HBr}$ in ACOH , $0-18^{\circ} \mathrm{C}$; iii, $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}$; iv, $\mathrm{H}_{2}, \mathrm{PtO}_{2}$, EtOAc; v, 5, DCC, HOBT, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{vi}^{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$
glucose 37 as detailed in Scheme 6. Hydrolysis of $\mathbf{4 2}$ then gave 43 (Scheme 6, step vi). The glucosyl derivatives 42 and 43 were synthesized as compounds possessing the previously established, biologically active (1'R)-configuration. A s well as modelling more closely the structural requirements of the mycalamide skeleton, cf. 1, it was also considered that the sugar moiety might impart improved water solubility, which would be of assistance in the in vitro cytotoxicity assay.

Assignment of configuration

Compounds 12a-j and 13a-j were assigned the ($1^{\prime} \mathrm{R}, 2 \mathrm{~S}$)- and (1 'S, 2 S)-absolute configurations, respectively. The relative configuration of the camphanate derivative $\mathbf{1 3 j}$ was determined unambiguously by single crystal X-ray analysis (Fig. 1). The absolute configuration of $\mathbf{1 3} \mathbf{j}$, and hence its ($\mathbf{1}^{\prime}$)-epimer $\mathbf{1 2 j}$, followed from the known absolute configurations of 14 and (1S,4R)-camphanyl chloride, which were used to prepare 12j and 13j (Scheme 2). The absolute configuration of 12a, and hence its (1^{\prime})-epimer 13a, was assigned on the basis that 12a was converted into 12j (Scheme 2). Compounds $\mathbf{2 8}$ and $\mathbf{3 0}$ gave identical NMR data, but opposite optical rotations, to the reference compounds 13a and 12a, respectively.
The configurations of the other analogues given in Table 1 followed from a comparison of ${ }^{1} \mathrm{H}$ NMR data. The methoxy resonance of the ($1^{\prime} \mathrm{R}, 2 \mathrm{~S}$)-derivatives 12a-i, was in a characteristic downfield position relative to the corresponding (1 ' $\mathrm{S}, 2 \mathrm{~S}$)diastereoisomers 13a-i. The CHR ${ }^{1}$ resonance of 12a, 12b and $12 f$ was also consistently $0.04-0.07 \mathrm{ppm}$ downfield relative to 13a, 13b and 13f. However, the corresponding resonances for 12c and 12h (where $\mathrm{R}^{1}=\mathrm{NH} Z$) were upfield relative to those of $\mathbf{1 3}$ c and $\mathbf{1 3}$ h. A n observed positive N OE between the ring pro-

Fig. 1 X-Ray molecular structure of compound 13j with crystallographic numbering scheme

Table 1 IC ${ }_{50}$ Values of derivatives against P388 cells

Compound	R^{1}	R^{2}	Configuration		$1 \mathrm{C}_{50} / \mu \mathrm{g} \mathrm{cm}^{-3}$
			$1^{\prime a}$	$2^{\text {a }}$	
12a	OH	Ph	R	S	52
13a	OH	Ph	S	S	>340
12b	OH	Me	R	S	>125
13b	OH	Me	S	S	$>188{ }^{\text {b }}$
12c	NHZ	Ph	R	S	14
13c	NHZ	Ph	S	S	$>188{ }^{\text {c }}$
12d	N H-Ala-Z	Ph	R	S	36
13d	N H-Ala-Z	Ph	S	S	>125
12e	OAc	Ph	R	S	101
13e	OAc	Ph	S	S	>313
12f	OH	Et	R	S	176
13f	OH	Et	S	S	43
12h	NHZ	Me	R	S	>375
13h	N H Z	Me	S	S	>375
12i	$\mathrm{OCOC}_{6} \mathrm{H}_{4} \mathrm{Br}$	Pri	R	S	$105{ }^{\text {d }}$
13i	$\mathrm{OCOC}_{6} \mathrm{H}_{4} \mathrm{Br}$	Pr ${ }^{\text {i }}$	S	S	105
12j	O-camphanyl	Ph	R	S	$42^{\text {e }}$
13j	O-camphanyl	Ph	S	S	$78{ }^{\text {e }}$
28	OH	Ph	R	R	27
30	OH	Ph	S	R	102
31		Ph	R	S	57
33		Ph	S	S	37
32		Et	R	S	57
34		Et	S	S	47
36		Ph	R	R	8
35		Ph	S	R	12
42	OAc		R	S	267
43	OH		R	S	>375

${ }^{\text {a }}$ A tom numbering as shown in Schemes. ${ }^{\text {b }}$ A ctivity obtained on 1:1 mixture of epimers. ${ }^{\text {c }}$ Activity obtained on 3:1 mixture of epimers. ${ }^{\text {d }}$ A ctivity obtained on 17:3 mixture of epimers. ${ }^{e}$ A ctivity obtained on 9:1 mixture of epimers.
tons labelled 1^{\prime} and 2 (Scheme 5, non-systematic numbering) of the oxazolidinones 31,32 and 35 , but not 33,34 and 36 , was consistent with the assignment of configuration of these derivatives.

Biological activity

The analogues shown in Table 1 were each tested for in vitro cytotoxicity against P388, a murine leukaemia cell line. IC_{50} values for each sample were determined, after a 72 h incubation period, using an M TT endpoint. ${ }^{20}$
In general, compounds 12 with a ($1^{\prime} \mathrm{R}, 2 \mathrm{~S}$)-configuration show significantly greater in vitro cytotoxicity than the corresponding ($1^{\prime} S, 2 S$)-derivatives 13 , such that a ($1^{\prime} R$)-configuration would appear favourable towards activity. Notable exceptions were the parent natural products 1-3 [the equiv-
alent $\mathrm{C}(10)$ position is S] and $\mathbf{1 2 f}$ and $\mathbf{1 3 f}$ (see below for a dis cussion). The C(10) epimer of mycalamide B is reported to be significantly less active than the parent natural product $\mathbf{2 .}{ }^{\text {11 }}$ An analysis of the data for $\mathbf{2 8}$ and $\mathbf{3 0}$ (Table 1), which possess the alternative (2R)-configuration, also suggests that a (1'R)configuration, as in 28, is favoured over a ($\mathbf{1}^{\prime} \mathrm{S}$)-configuration (30) for cytotoxic activity. The (1'R)-compounds 12a and 28 show similar in vitro antitumour activity such that it seems that there is no marked preference for either an (R)- or (S)-configuration at position $\mathrm{C}(2)$. It is worth noting that the natural products 1-3 possess an (S)-configuration at the equivalent $C(7)$ centre. A preference for a (1'R)-configuration over a (1'S)configuration does not seem to be evident within the cyclic oxazolidinone series 31-36, where the (1'S)- and (1'R)-compounds (non-systematic numbering) show similar in vitro cytotoxicity.
A variety of R^{1} groups appear to be accommodated for the induction of in vitro cytotoxicity. For example, the corresponding acetates of 12a and 13a, compounds 12 e and 13 e , show comparable activity. By comparison, acylation of the 7 -hydroxy group of $\mathbf{1}$ or $\mathbf{2}$ [analogous to $\mathrm{C}(2)$ in 12/13] results in compounds with significantly decreased activity. The (1')-epimeric pairs $\mathbf{1 2 c} / \mathbf{1 3 c}, \mathbf{1 2 d} / \mathbf{1 3 d}$ and $\mathbf{1 2 h} / \mathbf{1 3 h}$ were designed to give the derivatives more peptide character. This was done since the natural products (1-3), upon which the compounds in the current study were modelled, exert their biological activity by inhibiting protein biosynthesis. The most bioactive compounds in this series, compounds 12c and 12d, show activities comparable to, or better than, 12a. A gain a preference for a ($1^{\prime} \mathrm{R}$)configuration is noted (Table 1, 12c/13c and $\mathbf{1 2 d} / \mathbf{1 3 d}$).

A change from $\mathrm{R}^{2}=\mathrm{Ph}$ to Et appears to be tolerated, although in this case, contrary to the other compounds given in Table 1, a (1'S)-configuration seems to give the most potent in vitro bioactivity (see compounds $\mathbf{1 2 f}$ and 13f, Table 1). It should be noted that $13 f$ and the parent natural products, compounds $\mathbf{1 - 3}$, possess the same relative configuration at this centre [(1'S) in $13 f$ and (10S) in 1-3]. The configurations at $\mathrm{C}(2)$ of 13 f and $C(7)$ of 1-3 are both S. The introduction of a methyl group at the R^{2} position resulted in compounds with significantly reduced activity (see results for compounds 12b, 13b, 12h and 13h, Table 1). Finally, the glucosyl derivatives 42 and 43 show less activity than the corresponding $\mathrm{R}^{\mathbf{2}}=\mathrm{Et}$ and Ph analogues (Table 1).

Conclusion

Structure-activity studies on the mycalamide/pederin/onnamide skeleton (cf. 1-3) have established the key features which are necessary or essential for the bioactivity observed across this series of compounds. These structural requirements have been summarised in structure 4. Examples of general structure 4 have been synthesized (Table 1) and shown to give modest in vitro antitumour activity. The level of activity appears to be more sensitive to changes at R^{2} than R^{1}, and a ($1^{\prime} R$)configuration is favoured.

Experimental

M ps were taken using a Reichert hot-stage microscope and are uncorrected. Optical rotations were measured on a JA SCO J20 C recording spectropolarimeter and [a] ${ }_{\mathrm{D}}$ values are given in units of 10^{-1} degrees $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR Spectra were recorded on a Shimadzu FTIR-8201PC spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R Spectra were recorded on Varian Unity and XL300 spectrometers, in CDCl_{3} solution, using $\mathrm{M}_{4} \mathrm{Si}$ as an internal standard; J values are given in Hz . M ass spectra were obtained using a K ratos M S80R FA spectrometer. Radial chromatography was performed on a chromatotron (Harrison and H arrison) using M erck type $60 \mathrm{PF}_{254}$ silica gel. Compounds 5, 7, 8, 9 and 24 are commercially available. Compounds $10,{ }^{13} 14,{ }^{14} 17-20^{15}$ and $25{ }^{14}$ were prepared by the general literature methods.

(S)-2-A cetoxy-3-phenylpropanoic acid 6

To a solution of (S)-3-phenyllactic acid 5 ($106 \mathrm{mg}, 0.64 \mathrm{mmol}$) in dry pyridine ($1 \mathrm{~cm}^{3}$) was added acetic anhydride ($0.12 \mathrm{~cm}^{3}$, 1.27 mmol) and the mixture was stirred for 18 h at room temp. Water $\left(2 \mathrm{~cm}^{3}\right)$ was added and the solution was extracted with chloroform ($3 \times 5 \mathrm{~cm}^{3}$), dried and the solvent was evaporated to give 6 (quant.) as a yellow oil which was not purified further. ${ }^{1} \mathrm{H}$ NM R D ata were as previously reported. ${ }^{21}$

Preparation of compounds 12 and 13

The general methods A and B detailed below gave mixtures of 12 and 13 that were unstable to silica. H owever, for purposes of biological testing, rapid silica-based radial chromatography of the mixtures, where specified, gave samples of the separate epimers with some loss due to decomposition.
M ethod A. Compound 6, 7 or 8 (typically 0.60 mmol), 1hydroxybenzotriazole (1 equiv.) and 1.5 equiv. of $\mathbf{1 0}$ (or the hydrochloride salt of 9 and 1.5 equiv. of triethylamine) were dissolved in dichloromethane $\left(2.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min . Dicyclohexylcarbodiimide (1 equiv.) was added and the mixture was stirred for a further 10 min at $0^{\circ} \mathrm{C}$ and finally at $18^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with more dichloromethane ($5 \mathrm{~cm}^{3}$), filtered and the solvent was evaporated to give 11, which was reduced without further purification. The residue was redissolved in dry isopropyl alcohol (5 cm^{3}), sodium borohydride (15 equiv.) was added and the suspension was stirred at $0^{\circ} \mathrm{C}$ for 2 h . Brine ($5 \mathrm{~cm}^{3}$) was added and the mixture was extracted with ethyl acetate $\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water $\left(5 \mathrm{~cm}^{3}\right)$, dried and evaporated to give 12a-d and 13a-d as mixtures.

M ethod B. Triethylamine (25 equiv.) and 17, 18, 19 or 20 (25 equiv.) were added to $\mathbf{1 5}, \mathbf{1 6}, 21$ or 22 (typically 0.30 mmol) dissolved in dry dichloromethane $\left(2.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was then stirred for 18 h at $5^{\circ} \mathrm{C}$. The reaction mixture was washed with water, dried and evaporated to give 12e,g-j and 13e, g -j as mixtures
($1^{\prime} \mathrm{R}, 2 \mathrm{~S}$)- and ($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{2 S}$)-2-H ydroxy- N -($\mathbf{1}^{\prime}$-methoxy-1'-phenyl-methyl)-3-phenylpropanamide 12a and 13a. The acid 6 , freshly prepared from 5 ($96 \mathrm{mg}, 0.58 \mathrm{mmol}$) as previously described, was reacted with $\mathbf{1 0}$ according to general method A to give a mixture of 12a and 13a (54 mg). Purification on a 1 mm silica chromatotron plate eluting with diethyl ether-dichloromethane ($1: 9$ to $1: 0$) gave 13a (6 mg) [HRMS: found ($\mathrm{M}-\mathrm{Me})^{+}$, 270.1125. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N} \mathrm{O}_{3}$ requires 270.1130]; mp 104-105 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}$ -92 (c 3.8, dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3406,1684,1504,1497$ and 1092; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.9, \mathrm{OH}), 2.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 14.0 and $\left.8.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.27\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.0\right.$ and $\left.4.2, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), 6.10 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3$, CHOMe), $7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8, \mathrm{NH})$ and $7.30-7.38(10 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 40.8,55.9,72.9,81.2,125.8,127.1,128.6$, 128.6, 128.8, 129.6, 136.5, 139.9 and 172.8; m/z (EI) 270 $\left(\mathrm{M}^{+}-\mathrm{Me}, 15 \%\right), 253\left(\mathrm{M}^{+}-\mathrm{MeOH}, 22\right), 121$ (99) and 106 (100).

Further elution gave a second fraction (7 mg) containing a mixture of 13a and 12a ($3: 2$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy).
The final fraction gave 12a (9 mg) [HRMS: found $(\mathrm{M}-\mathrm{Me})^{+}$, 270.1128. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N} \mathrm{O}_{3}$ requires 270.1130]; mp 66$68{ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}-17$ (c 3.6, dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3406,1684$, 1504, 1497 and $1090 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8$ and 8.1 , $\mathrm{CH}_{2} \mathrm{Ph}$), 3.27 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and $4.1, \mathrm{CH}_{2} \mathrm{Ph}$), $3.47(3 \mathrm{H}, \mathrm{s}$, OM e), 4.45 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3$ and 3.9, CHOH), $6.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3$, CHOM e), 7.01 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{NH}$) and 7.31 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 40.6,56.1,72.7,81.1,125.8,127.1,128.5,128.5$, 128.8, 129.6, 136.3, 138.8 and 172.9; m/z (EI) $270\left(\mathrm{M}^{+}-\mathrm{M} \mathrm{e}\right.$, $7 \%), 253\left(\mathrm{M}^{+}-\mathrm{M} \mathrm{eOH}, 17\right), 121$ (77) and 106 (100).
Compounds 12a and 13a were also prepared by hydrolysing separate samples of 12e ($5 \mathrm{mg}, 0.01 \mathrm{mmol}$) and 13e ($4 \mathrm{mg}, 0.01$ mmol) in methanol and water ($2.5 \mathrm{~cm}^{3}$ of a $9: 1$ mixture) with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.2 equiv.) at room temp. for 2 h . The mixtures were evaporated and the residues were dissolved in dichloromethane
$\left(0.5 \mathrm{~cm}^{3}\right)$. The organic solutions were washed with water (0.5 cm^{3}), dried and evaporated to give white crystalline solids 12a ($4 \mathrm{mg}, 90 \%$) and 13a (4 mg , quant.).
($1^{\prime} \mathrm{R}, \mathbf{2 S}$)- and (1'S,2S)-2-H ydroxy-N-(1'-methoxyethyl)-3phenylpropanamide $\mathbf{1 2 b}$ and $\mathbf{1 3}$ b. The acid 6 , freshly prepared from 5 ($100 \mathrm{mg}, 0.60 \mathrm{mmol}$) as previously described, was reacted with 9 according to general method A to give a mixture of $\mathbf{1 2 b}$ and $\mathbf{1 3 b}(55 \mathrm{mg}$). Purification on a preparative silica column eluting with methanol-water (92:5) gave three fractions.

The first fraction contained a mixture of $\mathbf{1 2 b}$ and $\mathbf{1 3 b}$ (11 mg , $1: 1$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy).
The second fraction contained a mixture of $\mathbf{1 2 b}$ and $\mathbf{1 3 b}$ (6 $\mathrm{mg}, 3: 2$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy); data for 13b (from the mixture) $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.30(3 \mathrm{H}, \mathrm{d}, \mathrm{CHMe}), 2.94(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.24(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 4.05(1 \mathrm{H}, \mathrm{d}$, OH), $4.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}), 5.26(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ OM e), $6.72(1 \mathrm{H}$, d, NH) and 7.28 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The final fraction gave 12b as an oil (4 mg) [HRMS: found $(\mathrm{M}-\mathrm{Me})^{+}, 208.0966 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}$ requires 208.0973]; $\delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 1.26(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8, \mathrm{CHM}$ e), $2.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.6$ and 8.3, CH ${ }_{2} \mathrm{Ph}$), $3.24\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 4.41$ (1 H , dd, J 8.3 and 3.4, CHOH), $5.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.7$ and 5.8 , CHOM e), 7.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8, \mathrm{NH}$) and $7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}$ (EI) $208\left(M^{+}-\mathrm{Me}, 2 \%\right), 205\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 6\right), 191\left(\mathrm{M}^{+}-\right.$ $\mathrm{MeOH}, 80$) and 91 (100).
($\mathbf{1}^{\prime} \mathrm{R}, 2 \mathrm{~S}$)- and ($1^{\prime} \mathrm{S}, 2 \mathrm{~S}$)-2-Benzyloxycarbonylamino-N-($\mathbf{1}^{\prime}$ -methoxy-1'-phenylmethyl)-3-phenylpropanamide 12c and 13c. The acid 7 ($203 \mathrm{mg}, 0.68 \mathrm{mmol}$) was reacted with 10 according to general method A. The crude product was subjected to repeated chromatography eluting with ethyl acetate-light petroleum mixtures to give (S)-N -Z-phenylalaninamide ${ }^{22} 16$ (73 $\mathrm{mg}, 37 \%)$, further mixtures of $\mathbf{1 2 c} / \mathbf{1 3 c}(118 \mathrm{mg})$ and a sample of 12c (2 mg), mp $151-153^{\circ} \mathrm{C}$ (HRMS: found $\mathrm{M}^{+}, 418.1886$ $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 418.1893); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8$, CHCH_{2}), $3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}\right.$ e), $4.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 5.07(2 \mathrm{H}$, s, $\mathrm{PhCH}_{2} \mathrm{O}$), 6.07 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.7, \mathrm{CH}$ OM e), $7.10-7.31$ ($15 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 38.6,55.8,56.4$, $66.8,81.3,125.7,126.8,127.8,128.0,128.1,128.3,128.4,128.5$, 129.2, 129.3, 136.2, 138.7, 155.9 and 171.4; m/z (EI) 418 (M ${ }^{+}$, 5%), 403 ($\mathrm{M}^{+}-\mathrm{M} \mathrm{e}$) and 386 (100).

D ata for 13c (from the mixture) $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.8, \mathrm{CHCH}_{2}$), 3.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} \mathrm{C}_{2}\right.$), 5.04 ($2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}$), 6.09 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{CHOMe}$) and 7.14-7.31 ($15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 38.3,55.7,56.2,66.7,81.4,125.7$, 126.7, 127.7, 127.9, 128.1, 128.2, 128.3, 128.4, 129.2, 136.1, 138.8, 155.9 and 171.5; m / z (EI) 403 ($\mathrm{M}^{+}-\mathrm{M} \mathrm{e}, 32 \%$) and 386 ($\mathrm{M}^{+}-\mathrm{MeOH}, 100$).
($\mathbf{1}^{\prime} \mathrm{R}, \mathbf{2 S}$)- and ($\mathbf{1}^{\prime} \mathrm{S}, 2 \mathrm{~S}$)-2-[(N-Benzyloxycarbonyl-L-alaninyl)-amino]-N-(1'-methoxy-1'-phenylmethyl)-3-phenyIpropanamide
12d and 13d. The acid $\mathbf{8}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ was reacted with $\mathbf{1 0}$ according to general method A to give a mixture of 12d and 13d (36 mg) which was purified on a 1 mm chromatotron plate eluting with ethyl acetate-light petroleum ($1: 3$ to $3: 1$) to give 12d (9 mg) [HRMS: found ($\mathrm{M}-\mathrm{MeOH})^{+}$, 457.1993. $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires 457.2002]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1, \mathrm{CH}$ M e), 3.12 $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.6, \mathrm{CHCH}_{2}\right), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.17(1 \mathrm{H}, \mathrm{m}$, CHMe), $4.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 4.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.38$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8$, Ala-NH), 6.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{CH}$ OM e), 6.88 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8$, Phe-NH) and 7.15-7.31 ($15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 18.1,37.7,51.0,54.3,55.8,67.1,81.6,125.9,125.9$, 126.9, 127.0, 128.1, 128.3, 128.5, 128.6, 129.3, 136.1, 138.5, 171.1 and $172.3 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 457\left(\mathrm{M}^{+}-\mathrm{MeOH}, 2 \%\right), 352$ (4) and 91.0 (100).

Further elution gave 13d (21 mg) [HRMS: found ($\mathrm{M}-$ $\mathrm{MeOH})^{+}$, 457.2005. $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires 457.2002]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, [${ }^{2} \mathrm{H}_{6}$]D S SO) $1.23(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{CH}$ M e), 3.01-3.15 ($2 \mathrm{H}, \mathrm{m}$, CHCH_{2}), 3.39 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), $4.12(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$), 4.71 (1 H , m, Phe-CH), $5.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 6.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3$, CHOM e), 6.86 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3$, Ala-N H) , 7.17-7.34 ($15 \mathrm{H}, \mathrm{m}$,

ArH), 7.72 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3$, PheNH) and $8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3$, CONH); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3},\left[^{2} \mathrm{H}_{6}\right.\right.$ D M SO) 17.2, 36.6, 49.9, 53.3, 54.5, $65.3,80.2,125.1,125.4,127.0,127.1,127.4,128.4,136.1,138.2$, 170.6 and 171.6 .
($1^{\prime} R, 2 S$)- and ($1^{\prime} \mathrm{S}, 2 \mathrm{~S}$)-2-A cetoxy- N -(1^{\prime}-methoxy-1'-phenyl-methyl)-3-phenylpropanamide 12 e and 13 e . The amide 14 (87 $\mathrm{mg}, 0.53 \mathrm{mmol})$ was acetylated with acetic anhydride $\left(0.15 \mathrm{~cm}^{3}\right.$, 1.59 mmol) in pyridine ($3 \mathrm{~cm}^{3}$) to give 15^{23} as a yellow oil (quant.), which was not purified further. The amide 15 (0.53 mmol) was reacted with 17 according to general method B to give a crude mixture of $\mathbf{1 2 e}$ and $\mathbf{1 3 e}$. Repeated chromatography on a 2 mm silica chromatotron plate eluting with ethyl acetatelight petroleum mixtures gave a number of fractions.
The first fraction contained a mixture of 12 e and $13 \mathrm{e}(21 \mathrm{mg}$, 9:1 by ${ }^{1} \mathrm{H}$ NMR spectroscopy) which was crystallised from ethyl acetate-light petroleum to give $12 \mathrm{e}(6 \mathrm{mg}), \mathrm{mp} 122-125^{\circ} \mathrm{C}$ [HRMS: found $(\mathrm{M}-\mathrm{Me})^{+}$, 312.1233. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires 312.1236]; [a] $]_{\mathrm{D}}^{23}+89$ (c 5.3 , dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3419$, 1747, 1693, 1506, 1454, 1373 and 1220; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.07(3 \mathrm{H}, \mathrm{s}$, COM e), $3.21\left(2 \mathrm{H}\right.$, dd, J 5.6 and 2.2, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.41(3 \mathrm{H}, \mathrm{s}$, OM e), 5.49 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{CHOAc}$), $6.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8, \mathrm{CHOMe}$), 6.46 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.7, \mathrm{NH}$) and 7.12-7.30 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 20.9,37.5,56.1,74.2,80.8,125.7,126.9,128.3,128.4$, 128.4, 129.7, 135.9, 138.6, 149.7 and $169.3 ; \mathrm{m} / \mathrm{z}$ (EI) 312 $\left(M^{+}-\mathrm{Me}, 8 \%\right), 296\left(\mathrm{M}^{+}-\mathrm{OM} \mathrm{e}, 15\right), 237(50)$ and 106 (100).
Further elution gave mixtures of 12 e and 13 e (81 mg). Crystallisation of one such fraction from ethyl acetate-light petroleum gave $13 \mathrm{e}\left(5 \mathrm{mg}\right.$), mp $110-112^{\circ} \mathrm{C}$ [HRMS: found ($\mathrm{M}-\mathrm{M} \mathrm{e})^{+}$, 312.1234. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N} \mathrm{O}_{4}$ requires 312.1236]; [a] ${ }_{\mathrm{D}}^{23}-25$ (c 5.3, dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3419,1747,1693,1506$, 1454, 1373 and $1220 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}), 3.22(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 5.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ OA c), 6.10 (1 H, d, J 9.2, CH OM e), 6.77 ($1 \mathrm{H}, \mathrm{d}, \mathrm{NH}$) and 7.17-7.33 (10 H , $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 20.7,37.5,55.9,74.5,81.0,123.6,125.6$, 126.9, 128.3, 128.4, 129.5, 135.9, 138.9, 149.6 and 169.3; m/z (EI) $312\left(\mathrm{M}^{+}-\mathrm{Me}\right), 296\left(\mathrm{M}^{+}-\mathrm{OMe}, 8 \%\right), 252$ (84) and 121 (100).
($1^{\prime} \mathrm{R}, 2 \mathrm{~S}$)- and ($\mathbf{1}^{\prime} \mathrm{S}, 2 \mathrm{~S}$)-2-Hydroxy-N-(1'-methoxypropyl)-3phenylpropanamide 12 f and 13 f . A mixture of $\mathbf{1 2 g}$ and $\mathbf{1 3 g}$ prepared by method B (12 mg of a $1: 1$ mixture by ${ }^{1} \mathrm{H}$ NM R spectroscopy) was hydrolysed in methanol and water ($2.5 \mathrm{~cm}^{3}$ of a 9:1 mixture) with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.2 equiv.) at room temp. for 2 h . The mixture was evaporated and the residue was redissolved in dichloromethane ($2 \mathrm{~cm}^{3}$). The organic solution was washed with water $\left(2 \mathrm{~cm}^{3}\right)$, dried and the solvent was evaporated to give an oil (11 mg) which was chromatographed on a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum ($3: 10$) to give 13 f as an oil (2 mg) [HRMS: found ($\mathrm{M}-\mathrm{Me})^{+}$, 222.1125. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 222.1130]; [a] ${ }_{0}^{23}+104$ (c 0.2 , dichloromethane); $v_{\max } / \mathrm{cm}^{-1} 3400,2972,1680,1301$ and 1085; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3},\left[^{2} \mathrm{H}_{5}\right.\right.$]pyridine) $0.91\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right), 1.57(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $1.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), $2.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7$ and 8.3, CH 2 Ph), 3.22 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 3.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.38 (1 H , dd, J 8.3 and $3.9, \mathrm{CHOH}$), 5.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOM}$ e), 6.98 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{NH}$) and 7.21-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right.$, $\left[{ }^{2} \mathrm{H}_{5}\right.$]pyridine) $9.0,28.6,41.1,55.6,72.7,81.8,126.7,128.5$, 129.6 and 137.5; m/z (EI) 222 (M ${ }^{+}-\mathrm{Me} \quad 2 \%$), 208 $\left(M^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 13\right), 205\left(\mathrm{M}^{+}-\mathrm{MeOH}, 64\right), 91$ (63) and 73 (100).
Further elution gave mixtures of $\mathbf{1 2 f}$ and $\mathbf{1 3 f}$ and a sample 12 f as an oil (2 mg) [HRMS: found ($\mathrm{M}-\mathrm{Me})^{+}$, 222.1095. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 222.1130]; [$\left.\alpha\right]_{0}^{23}+423$ (c 0.2 , dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3400,2972,1680,1301$ and 1085; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, [${ }^{2} \mathrm{H}_{5}$]pyridine) $0.84\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{M}\right.$ e) , 1.48 and $1.65(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH} \mathrm{Z}^{2} \mathrm{Me}\right), 2.91\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7\right.$ and $\left.8.3, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.28(1 \mathrm{H}$, dd, J 13.7 and $3.4, \mathrm{CH}_{2} \mathrm{Ph}$), 3.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.46 (1 H , dd, J 8.3 and $3.4, \mathrm{CHOH}$), $5.03(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ OM e), $6.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH) and 7.18-7.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3},\left[\mathrm{H}_{5}\right]\right.$ pyridine) $8.8,28.2,40.9,55.5,72.3,81.7,126.2,128.1,129.6,137.9$ and 174.3; m/z (EI) $222\left(M^{+}-M e, 1 \%\right), 208\left(M^{+}-C_{2} H_{5}, 4\right), 205$ (27), 91 (36) and 73 (100).
($\mathbf{1}^{\prime} \mathrm{R}, \mathbf{2 S}$)- and ($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{2 S}$)-2-A cetoxy-N-(1^{\prime}-methoxypropyl)-3phenylpropanamide $\mathbf{1 2 g}$ and 13 g . The amide $15(0.25 \mathrm{mmol})$, prepared as described in the preparation of $\mathbf{1 2 e}$ and 13 e , was reacted with 19 according to general method B. Purification of the crude product (49 mg) on a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum ($1: 5$ to $1: 3$) gave a mixture of $\mathbf{1 2 g}$ and $\mathbf{1 3 g}$ ($12 \mathrm{mg}, 1: 1$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy) which could not be separated; δ_{H} (of the mixture; CDCl_{3}) 0.78 and 0.83 (each $3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}$), 1.42 and 1.57 (each $2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Me}$ e, 2.09 and 2.11 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 3.14 and 3.24 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), $3.15-3.22\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.99(\mathrm{~m}, \mathrm{CHOMe}$), 5.35 and 5.40 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}$), 6.10 (br m, NH) and 7.17-7.31 (m, ArH); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 8.8,20.7,20.9,28.3,28.5,37.5$, 37.6, 55.7, 55.9, 74.3, 74.4, 82.3, 127.0, 128.4, 128.4, 129.6, 129.6, 135.6, 135.7, 169.3 and 169.4
($1^{\prime} \mathrm{R}, 2 \mathrm{~S}$)- and ($\mathbf{1}^{\prime} \mathrm{S}, 2 \mathrm{~S}$)-2-B enzyloxycarbonylamino- N -($\mathbf{1}^{\prime}$ -methoxyethyl)-3-phenylpropanamide 12 h and 13 h . The amide $\mathbf{1 6}$, isolated from the preparation of $\mathbf{1 2 c}$ and $\mathbf{1 3 c}(61 \mathrm{mg}, 0.21$ mmol), was reacted with 18 according to general method B. Purification of the crude product (38 mg) on a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum ($1: 5$ to $1: 1$) gave three fractions.

The first fraction gave 12h as a solid (18 mg) [HRMS: found $(\mathrm{M}-\mathrm{MeOH})^{+}$, 324.1474. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 324.1474]; mp $136-138{ }^{\circ} \mathrm{C}$; $[a]_{D}^{23}-10$ (c 0.1 , dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3416$, $3034,1757,1713,1690$ and $1497 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3},\left[{ }^{2} \mathrm{H}_{5}\right]\right.$ pyridine) 1.12 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8, \mathrm{CHM}$ e), $3.08\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{CHCH}_{2}\right.$), $3.24(3 \mathrm{H}, \mathrm{s}$, OM e), $4.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.18$ (1 H, m, CHOM e), 6.24(1H,d, J.4, BnOCONH) and 7.11-7.36 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right.$, ${ }^{2} \mathrm{H}_{5}$]pyridine) 20.9, 38.4, 55.1, 56.3, $66.5,77.5,126.6,127.6,127.8,128.2,128.3,129.1$ and 171.1 $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 324\left(\mathrm{M}^{+}-\mathrm{M} \mathrm{eOH}, 2 \%\right), 91$ (100).

The second fraction contained a mixture of $\mathbf{1 2 h}$ and $\mathbf{1 3 h}$ (10 $\mathrm{mg}, 3: 2$ by ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectroscopy).

The final fraction gave 13 h (19 mg) [HRMS: found $(\mathrm{M}-\mathrm{MeOH})^{+}$, 324.1474. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 324.1474]; mp $158-160^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{23}+3$ (c 2, dichloromethane); $v_{\max } / \mathrm{cm}^{-1} 3416$ 3034, 1757, 1713, 1690 and 1499; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3},{ }^{2} \mathrm{H}_{5}\right.$]pyridine) 1.23 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{CHM}$ e), $3.06\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{CHCH}_{2}\right.$), $3.12(3 \mathrm{H}, \mathrm{s}$, OM e), $4.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.20(1$ H, m, CHOM e), 6.24 (1 H, d, J 7.8, BnOCONH), 7.16-7.30 (10 $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{CONH})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3},{ }^{2} \mathrm{H}_{5}\right.$]pyridine) 21.0, 38.2, 55.1, 56.2, 66.6, 77.8, 126.6, 127.6, 127.8, 128.2, 128.2, 129.1, 155.8 and $166.1 ; \mathrm{m} / \mathrm{z}$ (EI) 324 ($\mathrm{M}^{+}-\mathrm{MeOH}, 4 \%$) and 91 (100).
($1^{\prime} \mathrm{R}, 2 \mathrm{~S}$)- and ($1^{\prime} \mathrm{S}, 2 \mathrm{~S}$)-2-(4-B romobenzoyloxy)-N -(1^{\prime}-meth-oxy-2'-methylpropyl)-3-phenylpropanamide 12i and 13i. To a solution of amide 14 ($55 \mathrm{mg}, 0.33 \mathrm{mmol}$) and 4-dimethylaminopyridine ($61 \mathrm{mg}, 0.50 \mathrm{mmol}$) in dichloromethane (2.5 cm^{3}) was added triethylamine ($92 \mu \mathrm{l}, 0.66 \mathrm{mmol}$) and 4 bromobenzoyl chloride ($81 \mathrm{mg}, 0.57 \mathrm{mmol}$). A fter stirring the mixture at room temp. for 3 h the solvent was evaporated and benzene ($5 \mathrm{~cm}^{3}$) was added. The organic layer was washed with 2 m aqueous $\mathrm{HCl}\left(3 \mathrm{~cm}^{3}\right)$, saturated aqueous $\mathrm{NaHCO}_{3}\left(3 \mathrm{~cm}^{3}\right)$ and water ($3 \mathrm{~cm}^{3}$), and dried. Evaporation under reduced pressure gave 21 (117 mg) which was used without further purification; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right)$, 5.77 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), $6.00(1 \mathrm{H}, \mathrm{br}$ s, NH), 7.23-7.29 ($5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.82(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

The amide 21 was reacted with 20 according to general method B to give a crude mixture of $\mathbf{1 2 i}$ and $\mathbf{1 3 i}$ (quant.). The mixture was purified by two passes through a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum ($3: 50$) followed by ethyl acetate-light petroleum (1:50) to give 13i (1 mg) [HRMS: found ($\mathrm{M}-\mathrm{MeOH})^{+}, 401.0635$ $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{79} \mathrm{Br}$ requires 401.0627]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6.9, CHM e), 0.81 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{CHM} \mathrm{e}$), $1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{M} \mathrm{e}_{2}\right.$), $3.16(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.34\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH} \mathrm{P}^{2} \mathrm{Ph}\right), 4.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.8$ and 9.7, CHOM e), $5.60\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{CHCH}_{2}\right), 5.93(1 \mathrm{H}$, d, J 9.3, NH), 7.22-7.28 (5 H, m, ArH), $7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$
and $7.86(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 403\left[\mathrm{M}{ }^{+}\left({ }^{81} \mathrm{Br}\right)-\mathrm{MeOH}\right.$, 3\%], $\left.401\left[{ }^{+}{ }^{(79} \mathrm{Br}\right)-\mathrm{MeOH}, 4\right], 333$ (9), 185 (95) and 183 (100).

Further elution gave fractions containing a mixture of $\mathbf{1 2 i}$ and $\mathbf{1 3 i}$ (13 mg),

The final fraction contained a mixture of $\mathbf{1 2 i}$ and $\mathbf{1 3 i}(3 \mathrm{mg}$, 17:3 by ${ }^{1} \mathrm{H}$ NMR spectroscopy) [HRMS: found ($\mathrm{M}-$ $\mathrm{MeOH})^{+}$, 401.0633. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{79} \mathrm{Br}$ requires 401.0627]; data for $\mathbf{1 2 i}$ (from the mixture) $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9$, CHMe), 0.79 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{CHMe}$), 1.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHM} e_{2}$), $3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}\right.$ e), $3.33\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.8$ and 9.7, CHOM e), $5.64\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{CHCH}_{2}\right), 5.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.3, NH) , 7.22-7.27 (5 H , m, ArH), 7.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.84 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z (EI) 403 [M $\left.{ }^{+}\left({ }^{81} \mathrm{Br}\right)-\mathrm{MeOH}, 3 \%\right], 401$ $\left.\left[\mathrm{M}{ }^{+}{ }^{(79} \mathrm{Br}\right)-\mathrm{M} \mathrm{eOH}, 3\right], 333$ (8), 185 (87) and 183 (85).
($1^{\prime} \mathrm{R}, 2 \mathrm{~S}$)- and ($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{2 S}$)-2-[(1S)-C amphanyloxy]-N-(1'-meth-oxy-1'-phenylmethyl)-3-phenylpropanamide 12 j and 13 j . A solution of ($1 \mathrm{~S}, 4 \mathrm{R}$)-camphanic acid ($66 \mathrm{mg}, 0.33 \mathrm{mmol}$) in thionyl chloride ($5 \mathrm{~cm}^{3}$) was refluxed for 2 h . Evaporation of the solvent under reduced pressure gave an oil which was dissolved in dichloromethane ($1 \mathrm{~cm}^{3}$). The solution was added to a stirred solution of 14 ($24 \mathrm{mg}, 0.15 \mathrm{mmol}$), 4-dimethylaminopyridine ($18 \mathrm{mg}, 0.15 \mathrm{mmol}$) and diisopropylethylamine ($28 \mu \mathrm{l}, 0.16$ mmol) in dichloromethane ($1 \mathrm{~cm}^{3}$). A fter stirring for 18 h at room temp. the reaction mixture was washed with water ($2 \mathrm{~cm}^{3}$) and dried. Evaporation under reduced pressuregave 22 (65 mg), which was used without further purification.

Compound 22 ($65 \mathrm{mg}, 0.19 \mathrm{mmol}$) was reacted with 17 according to general method B. Purification of the crude product (44 mg) by two passes through a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum ($2: 3$) followed by ethyl acetate-light petroleum ($1: 4$ to $3: 7$) gave a mixture of 12j and $\mathbf{1 3 j}$ ($14 \mathrm{mg}, 3: 2$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) [HRMS: found ($\mathrm{M}-\mathrm{OM} \mathrm{e})^{+}$, 434.1942. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{5}$ requires 434.1968]; data for $\mathbf{1 2 j}$ (from the mixture) $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3},\left[{ }^{2} \mathrm{H}_{5}\right]\right.$ pyridine) 0.71 , 0.97 and 1.07 (each $3 \mathrm{H}, \mathrm{s}$, camph-M e), $1.65(1 \mathrm{H}, \mathrm{m}), 1.90(2 \mathrm{H}$, $\mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{m}), 3.16\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.6\right.$ and $\left.8.3, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.33$ (1 H , dd, J 14.6 and $4.6, \mathrm{CH}_{2} \mathrm{Ph}$), $3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.52(1 \mathrm{H}$, dd, J 8.3 and 4.6, CHCO), 6.10 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{CHOMe}$) and 7.19-7.37 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z (EI) 434 (M ${ }^{+}$- OM e, 11\%), 329 (5), 273 (82) and 131 (100).

Further elution gave a mixture of 13 j and 12 j which was crystallised from ethyl acetate-light petroleum to give crystals of 13 j (11 mg) suitable for X-ray crystallography [HRMS: found ($\mathrm{M}-\mathrm{OM} \mathrm{e})^{+}$, 434.1974. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{5}$ requires 434.1968]; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3},\left[{ }^{2} \mathrm{H}_{5}\right]\right.$ pyridine) $0.76,1.00$ and 1.08 (each 3 H , s, camph-M e), $1.60(1 \mathrm{H}, \mathrm{m}), 1.76(1 \mathrm{H}, \mathrm{m}), 1.87(1 \mathrm{H}, \mathrm{m}), 2.26(1$ H, m), 3.17 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.4$ and $8.5, \mathrm{CH}_{2} \mathrm{Ph}$), $3.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 14.2 and $5.4, \mathrm{CH}_{2} \mathrm{Ph}$), $3.42(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 5.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4$ and 5.4, CHCO), 6.11 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{CH}$ OM e), 7.17-7.32 (10 $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.99 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{NH}$); m/z (EI) 434 $\left(\mathrm{M}^{+}-\mathrm{OM} \mathrm{e}, 6 \%\right), 330(7), 273$ (70) and 131 (100)
A mixture ($5 \mathrm{mg}, 72 \%$) of 12 j and 13 j ($9: 1$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was also prepared from a mixture ($5 \mathrm{mg}, 0.02$ mmol) of 12a and 13a (9:1 by ${ }^{1} \mathrm{H}$ NM R spectroscopy) using (1S,4R)-camphanyl chloride as described for the preparation of 22 from 14

($1^{\prime} \mathrm{R}, 2 \mathrm{R}$)- and ($\mathbf{1}^{\prime} \mathrm{S}, 2 \mathrm{R}$)-2-A cetoxy-N-(1'-methoxy-1'-phenyl-methyl)-3-phenylpropanamide 27 and 29

The amide 25 ($40 \mathrm{mg}, 0.24 \mathrm{mmol}$) was acetylated with acetic anhydride ($69 \mu \mathrm{l}, 0.73 \mathrm{mmol}$) in pyridine ($3 \mathrm{~cm}^{3}$) to give 26 as a yellow oil (quant.), which was not purified further. The amide 26 (0.24 mmol) was reacted with 17 according to general method B (see preparation of $\mathbf{1 2} / \mathbf{1 3}$). Purification of the crude mixture (33 mg) on a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum ($2: 25$ to $1: 3$) gave a mixture of 27 and 29 ($8 \mathrm{mg}, 7: 3$ by ${ }^{1} \mathrm{H}$ NM R spectroscopy) which was recrystallised from ethyl acetate-light petroleum to give 27 (3 mg), mp $129-131^{\circ} \mathrm{C}\left[\mathrm{HRMS}\right.$: found ($\mathrm{M}^{+}-\mathrm{Me}$), 312.1233.
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires 312.1236]; [a] $]_{0}^{23}-37$ (c 2.3, dichlorometh ane); δ_{H} and δ_{C} data identical to enantiomer $\mathbf{1 2 e}$.

Further elution gave a fraction containing a mixture of 29 and 27 ($7 \mathrm{mg}, 8: 2$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) which was recrystallised from ethyl acetate-light petroleum to give 29 (3 mg), mp $111-113^{\circ} \mathrm{C}\left[\mathrm{HRMS}\right.$: found $(\mathrm{M}-\mathrm{Me})^{+}, 312.1234$. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires 312.1236]; [$\left.a\right]_{\mathrm{D}}^{23}+24$ (c 0.7, dichloromethane); δ_{H} and δ_{C} data identical to enantiomer 13e).

($1^{\prime} R, 2 R$)- and ($1^{\prime} \mathrm{S}, 2 \mathrm{R}$)-2-H ydroxy-N-($\mathbf{1}^{\prime}$-methoxy- $\mathbf{1}^{\prime}$ -phenyImethyl)-3-phenylpropanamide 28 and 30

The acetates $27(2.3 \mathrm{mg}, 0.007 \mathrm{mmol})$ and $29(1.3 \mathrm{mg}, 0.004$ mmol) were separately hydrolysed (as described for 12e and 13e in the preparation of $\mathbf{1 2 a}$ and $\mathbf{1 3 a}$) to give 28 ($1.7 \mathrm{mg}, 84 \%$) and $30(0.7 \mathrm{mg}, 60 \%)$, respectively. Compound $28, \mathrm{mp} 62-64^{\circ} \mathrm{C}$ [HRMS: found $(\mathrm{M}-\mathrm{Me})^{+}$, 270.1134. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 270.1130]; [a] $]_{\mathrm{D}}^{23}+21$ (c 0.1, dichloromethane); δ_{H} and δ_{c} data identical to enantiomer 12a. Compound 30, mp $99-101^{\circ} \mathrm{C}$ [HRMS: found ($\mathrm{M}-\mathrm{Me})^{+}$, 270.1128. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires 270.1130]; $[a]_{D}^{23}+76$ (c 0.4, dichloromethane); δ_{H} and δ_{C} data identical to enantiomer 13a.

(2R ,5S)- and (2S,5S)-5-B enzyl-2-phenyl-1,3-oxazolidin-4-ones 31 and 33

A n excess of $\mathbf{1 7}$ (25 equiv.) was added to the amide $\mathbf{1 4}$ (93 mg , 0.56 mmol) in dichloromethane ($5 \mathrm{~cm}^{3}$) and the mixture was stirred at $-10^{\circ} \mathrm{C}$ for 18 h . The solution was washed with 10% aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and water ($5 \mathrm{~cm}^{3}$), dried and the solvent was evaporated under reduced pressure to give a crude mixture of 31 and 33 (141 mg). Purification on a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum (2:3) gave a mixture of 31 and 33 ($76 \mathrm{mg}, 54 \%, 4: 1$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy). Further purification on a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum (1:9 to 1:0) gave 33 as an oil (19 mg) (HRMS : found $\mathrm{M}^{+}, 253.1102$. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 253.1103); [a] ${ }_{0}^{23}-17$ (c 0.7, dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3429,1756,1728,1278,1247$ and 1126 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} \mathrm{Cl}_{2}\right), 5.72$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4, \mathrm{NCH}$), 7.24-7.37 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.86(1 \mathrm{H}$, br s, NH); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 37.6,78.2,87.8,126.2,126.8,128.3,128.7$, 129.7, 129.7, 136.1, 138.3 and 166.4; m/z (EI) 253 (M ${ }^{+}, 76 \%$), 106 (100).

F urther elution gave 31 as an oil (11 mg) (HRMS: found M^{+}, 253.1105. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 253.1103); [$\left.\alpha\right]_{0}^{23}-121$ (c 0.1 , dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3430,1730,1498,1462,1313$ and 1081; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right)$, 5.96 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1, \mathrm{NCH}$), 7.03-7.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.18-7.36 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 37.4,78.5$, 87.1, 126.6, 127.0, 128.3, 128.5, 129.8, 129.9, 136.5, 137.5 and 174.5; m/z (EI) 253 ($\mathrm{M}^{+}, 25 \%$), 147 (90) and 106 (100).
(2R,5S)- and ($2 S, 5 S$)-5-B enzyl-2-ethyl-1,3-oxazolidin-4-ones 32 and 34
Prepared as described for $\mathbf{3 1}$ and $\mathbf{3 3}$ using the amide $\mathbf{1 4}$ (124 mg , 0.73 mmol) and 19 (25 equiv.). Purification of the crude mixture on a 1 mm silica chromatotron plate eluting with ethyl acetatedichloromethane ($0: 1$ to $3: 10$) gave 34 as an oil (6 mg) (HRMS: found M^{+}, 205.1103. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 205.1103); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{Me}), 1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.05$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}$), $4.85(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$), $6.46\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH) and $7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 7.2$, 29.5, 37.8, 77.9, 87.7, 126.7, 128.3, 129.8, 136.5 and $176.0 ; \mathrm{m} / \mathrm{z}$ (EI) $205\left(\mathrm{M}^{+}, 54 \%\right), 176\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 49\right), 131$ (87) and 91 (100).

F urther elution gave a second fraction containing a mixture of 32 and 34 ($6 \mathrm{mg}, 1: 4$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy).

The final fraction gave 32 as an oil (13 mg) (HRMS: found $\mathrm{M}^{+}, 205.1106 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{2}$ requires 205.1103); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.87$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{Me}$), $1.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right.$), $3.07(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.49(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} C O), 5.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} O M \mathrm{e}), 6.88(1$
$\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and 7.28 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 7.3,29.1,37.9$, 78.2 87.2, 126.7, 128.2, 129.7, 136.9 and 174.1; m/z (EI) 205 $\left(M^{+}, 40 \%\right), 176\left(M^{+}-\mathrm{C}_{2} \mathrm{H}_{5}, 78\right), 131$ (73) and 91 (100).

(2S,5R)- and (2R ,5R)-5-B enzyl-2-phenyl-1,3-oxazolidin-4-ones

 35 and 36Prepared as described for $\mathbf{3 1}$ and $\mathbf{3 3}$ using the amide $\mathbf{2 5}$ (40 mg , 0.24 mmol) and $\mathbf{1 7}$ (25 equiv.). Purification of the crude mixture (141 mg) by flash silica chromatography, eluting with ethyl acetate-dichloromethane ($1: 20$ to $1: 5$) gave two fractions. The first fraction contained a mixture of 36 and 35 ($16 \mathrm{mg}, 7: 3$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy). The second fraction gave 35 as an oil (16 mg) (HRMS: found M^{+}, 253.1105. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 253.1103); δ_{H} data identical to 31. The first fraction was further purified on a 1 mm silica chromatotron plate eluting with ethyl acetate-light petroleum ($1: 3$ to $1: 1$) to give 36 as an oil (2 mg) (HRMS: found M^{+}, 253.1102. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 253.1103); δ_{H} data identical to 33. Further elution gave more $\mathbf{3 5}(3 \mathrm{mg})$.

(2S)-2-H ydroxy-3-phenyl-N-(2,3,4,6-tetra-0 -acetyl- β-D glucopyranosyl)propanamide 42

A solution of the acid 5^{17-19} ($50 \mathrm{mg}, 0.30 \mathrm{mmol}$), glucosylamine 41 ($104 \mathrm{mg}, 0.30 \mathrm{mmol}$), 1-hydroxybenzotriazole ($42 \mathrm{mg}, 0.30$ mmol) and dicyclohexylcarbodiimide ($61 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) was stirred at room temp. for 5 d . The mixture was filtered and evaporated to give the crude amide 42 (quant.). Purification on a 1 mm chromatotron plate eluting with ethyl acetate-light petroleum ($1: 1$) gave $\mathbf{4 2}(87 \mathrm{mg}$, 59%), $\mathrm{mp} 172.5-174.5^{\circ} \mathrm{C}$ (from ethyl acetate-light petroleum) (HRMS: found MH^{+}, 496.1810. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{11}$ requires 496.1820); $[a]_{\mathrm{D}}^{23}+46$ (c 0.1, dichloromethane); $v_{\max } / \mathrm{cm}^{-1} 3052$, 1756, 1225 and 1043; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.94, 2.02, 2.03, 2.07 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}), 2.78\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.6\right.$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.86(1 \mathrm{H}$, d, J 4.8, OH), 3.18 ($1 \mathrm{H}, \mathrm{dd}$, J 13.7 and 2.9, CH ${ }_{2} \mathrm{Ph}$), $3.82(1 \mathrm{H}$, m, H-5), $4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 4.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 4.33(1 \mathrm{H}, \mathrm{m}$, CHCO), $4.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5, \mathrm{H}-2), 5.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.5, \mathrm{H}-4), 5.21$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.2, \mathrm{H}-1$), 5.30 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.3, \mathrm{H}-3$), 7.23-7.34 ($4 \mathrm{H}, \mathrm{m}$, ArH) and $7.46(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 20.5,20.6,40.3,61.5$, $68.0,70.4,72.6,72.7,73.6,77.8,127.0,128.6,129.5,136.4$, 169.5, 170.5 and 173.6; m/z (FAB) 496 ($\mathrm{M} \mathrm{H}^{+}, 53 \%$) and 168 (100).

(2S)-2-H ydroxy-3-phenyl-N-(β-D-glucopyranosyl)propanamide

 43The amide 42 ($37 \mathrm{mg}, 0.08 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{mg}, 0.02$ mmol) were dissolved in methanol and water ($4 \mathrm{~cm}^{3}$ of a 9:1 solution) and the mixture was stirred at room temp. for 1 h . The methanol was removed under reduced pressure and the aqueous layer was washed with dichloromethane ($3 \times 5 \mathrm{~cm}^{3}$) and evaporated to give 43 ($24 \mathrm{mg}, 96 \%$) (HRMS: found MK ${ }^{+}$, 366.0960. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N} \mathrm{O}_{7} \mathrm{~K}$ requires 366.0955); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 1.77(1 \mathrm{H}$, s, OH), $2.84\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2\right.$ and $\left.7.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 14.1 and $4.9, \mathrm{CH}_{2} \mathrm{Ph}$), 3.25-3.77 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-2-\mathrm{H}-6$), $4.36(1 \mathrm{H}$, dd, J 7.8 and $4.9, \mathrm{CHCO}), 4.81$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{H}-1$) and $7.16-$ 7.26 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z (FAB) 366 (M K ${ }^{+}, 8 \%$), 307 (10) and 153 (100).

C rystal structure determination for 13 j

C rystal data. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{6}, \mathrm{M}=465.53$, triclinic, $a=6.2953$ (13), $\mathrm{b}=12.667(3), \mathrm{c}=15.522(3) \AA, a=88.73(3), \beta=86.45(3), \gamma=$ 85.19(3) ${ }^{\circ}, V=1230.9(4) \AA^{3}$ [by refinement against setting angles for 25 reflections with $106 \leq 2 \theta \leq 115^{\circ}, \lambda=1.54184 \AA$, $\mathrm{T}=293(2) \mathrm{K}]$, space group $\mathrm{P} 1(\mathrm{No.1}), \mathrm{Z}=2, \mathrm{D}_{\mathrm{x}}=1.256 \mathrm{~g} \mathrm{~cm}^{-3}$, colourless needle $0.7 \times 0.2 \times 0.08 \mathrm{~mm}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.722$ mm^{-1}.
Data collection and processing. Rigaku AFC four-circle diffractometer, ω - 2θ scans, graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha \mathrm{X}$ radiation; 4056 reflections measured ($5.7 \leq 2 \theta \leq 120.2^{\circ},+h, \pm k$, $\pm \mathrm{I}) ; 3665$ had $\mathrm{F} \geq 4 \sigma(\mathrm{~F})$ and all 4056 were retained in all calculations. Three intensity standards, monitored every 150 reflec-
tions, showed slight variations (1.3\%). Corrections for absorption (min., 0.883; max., 1.000) were made using the ψ-scan method.

Structure solution and refinement. Automatic direct methods ${ }^{24}$ (all non-H atoms). F ull-matrix least-squares refinement ${ }^{25}$ with all non-H atoms anisotropic; hydrogen atoms were introduced at geometrically calculated positions and thereafter allowed to ride on their parent atoms. The weighting scheme $\mathrm{w}^{-1}=\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.045 \mathrm{P})^{2}+0.044 \mathrm{P}\right], \mathrm{P}={ }_{3}\left[\mathrm{M} \mathrm{AX}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right]$ gave satisfactory agreement analyses. Final $\mathrm{R}_{1}[\mathrm{~F} \geq 4 \sigma(\mathrm{~F})]=$ $0.0282, \mathrm{wR}_{2}$ (all data) $=0.102, \mathrm{~S}\left(\mathrm{~F}^{2}\right)=1.12$ for 621 refined parameters and 3 restraints. An absolute structure (Flack ${ }^{26}$) parameter refined to $0.3(2)$; no extinction correction was required; and the final $\Delta \mathrm{F}$ synthesis showed no peaks above $\pm 0.15 \mathrm{e}^{-3}$.
A tomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/108.

Acknowledgements

The authors acknowledge financial support from the N ew Zealand Foundation for Research, Science and Technology Public Good Science Fund. We also thank M rs G. Barns for providing the biological assays, MrB. M. Clark for the mass spectrometry, Professor W. Robinson for his assistance with the X -ray crystallography, A ndrew Thompson and Shane Blincoe for carrying out some preliminary synthetic studies and Professor Sir John Cornforth for some useful discussions

References

1 Part 1: N. B. Perry, J. W. Blunt, M . H. G. M unro and L. K . Pannell, J. Am. Chem. Soc., 1988, 110, 4850.

2 Part 2: N. B. Perry, J. W. Blunt, M. H. G. M unro and A. M. Thompson, J. Org. Chem., 1990, 55, 223.
3 Part 3: A. M. Thompson, J. W. Blunt, M. H. G. M unro, N. B. Perry and L. K . Pannell, J. C hem. Soc., Perkin Trans. 1, 1992, 1335; Part 4: A . M . Thompson, J. W. Blunt, M . H. G. M unro and B. M . Clark,
J. Chem. Soc., Perkin Trans. 1, 1994, 1025; Part 5: A. M . Thompson, J. W. Blunt, M . H. G. M unro and N. B. Perry, J. Chem. Soc., Perkin Trans. 1, 1995, 1233.
4 C. Cardani, D. Ghiringhelli, R. M ondelli and A. Quilico, Tetrahedron Lett., 1965, 2537; C. Cardani, D. Ghiringhelli, A. Quilico and A. Selva, Tetrahedron Lett., 1967, 4023.
5 (a) S. Sakemi, T. Ichiba, S. K ahmoto, G. Saucy and T. Higa, J. A m. C hem. Soc., 1988, 110, 4851; (b) S. M atsunaga, N. F usetani and Y. N akao, Tetrahedron, 1992, 48, 8369.

6 N. F usetani, T. Sugawara and S. M atsunaga, J. Org. Chem., 1992, 57, 3828.
7 T. N akata, S. N agao and T. Oishi, Tetrahedron Lett., 1985, 26, 6465.
8 P. K ocienski, K . Jarowicki and S. M arczak, Synthesis, 1991, 1191.
9 C. Y. H ong and Y. K ishi, J. Org. Chem., 1990, 55, 4242; J. Am. C hem. Soc., 1991, 113, 9693.
10 N. S. Burres and J. J. Clement, C ancer Res., 1989, 49, 2935.
11 P. K ocienski, P. Ranbo, J. K. Davis, F. T. Boyle, D. E. D avies and A . R ichter, J. C hem. Soc., Perkin Trans. 1, 1996, 1797.
12 F. M atsuda, N. Tomiyoshi, M. Yanagiya and T. M atsumoto, Tetrahedron, 1988, 44, 7063; F. M atsuda, M. Y anagiya and T. M atsumoto, Tetrahedron Lett., 1982, 23, 4043.

13 M . M . Endicott, E. Wick, M . L. M ercury and M . L. Sherrill, J. A m. C hem. Soc., 1946, 68, 1299.
14 L. F. Audrieth and M. Sveda, O rg. Synth., 1955, C oll. Vol. 3, 536.
15 F. K lages and E. M ühlbauer, C hem. Ber., 1959, 92, 1818.
16 K . Pilgram and G. E. Pollard, J. H eterocycl. Chem., 1977, 14, 1029.
17 C. E. Redmann and C. N iemann, Org. Synth., 1955, C oll. Vol. 3, 11.
18 T. Ogawa, S. N akabayashi and S. Shibata, A gric. Biol. Chem., 1983, 47, 281.
19 A. Bertho and J. M aier, J ustus Liebigs A nn. Chem., 1932, 498, 50.
20 M. C. Alley, D. A. Scudiero, A. M onks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. A bbott, J. G. M ayo, R. H. Shoemaker and M. R. Boyd, C ancer Res., 1988, 48, 589.
21 T. K olasa and M . J. M iller, J. Org. C hem., 1987, 52, 4978.
22 S. Y. H wang, W. D. K ingsbury, N. M . H all, D. R . Jakas, G. L. D unn and C. G ilvarg, A nal. B iochem., 1986, 154, 552.
23 U. Schmidt, P. G leich, H. G riesser and R . U tz, Synthesis, 1986, 992.
24 G. M. Sheldrick, P rogram for Crystal Structure Solution, U niversity of G öttingen, 1993.
25 G. M. Sheldrick, A cta C rystallgr., Sect. A, 1990, 46, 467.
26 International Tables for Crystallography, ed. J. A. Ibers and W. C. H amilton, vol. C, K ynoch Press, Birmingham, 1992.

Paper 6/08168A
R eceived 3rd December 1996 A ccepted 25th February 1997

